Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2447: 205-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583784

RESUMO

Deciphering the molecular mechanisms underlying the regulation of the ATG4 protease is essential to understand the regulation of ATG8 lipidation, a key step in the biogenesis of the autophagosome and hence in autophagy progression. Here, we describe two complementary approaches to monitor ATG4 proteolytic activity in the model green alga Chlamydomonas reinhardtii: an in vitro assay using recombinant ATG4 and recombinant ATG8 as substrate, and a cell-free assay using soluble total protein extract from Chlamydomonas and recombinant Chlamydomonas ATG8 as substrate. Both assays are followed by non-reducing SDS-PAGE and immuno-blot analysis. Given the high evolutionary conservation of the ATG8 maturation process, these assays have also been validated to monitor ATG4 activity in yeast using Chlamydomonas ATG8 as substrate.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Microalgas , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeo Hidrolases/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Plant Cell ; 32(12): 3902-3920, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037147

RESUMO

Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Proteases/metabolismo , Proteômica , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Proteínas Relacionadas à Autofagia/genética , Cisteína Proteases/genética , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfetos/metabolismo
3.
Mol Plant ; 2(2): 270-83, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19825613

RESUMO

The expression of the genes encoding the ferredoxin-thioredoxin system including the ferredoxin-thioredoxin reductase (FTR) genes ftrC and ftrV and the four different thioredoxin genes trxA (m-type; slr0623), trxB (x-type; slr1139), trxC (sll1057) and trxQ (y-type; slr0233) of the cyanobacterium Synechocystis sp. PCC 6803 has been studied according to changes in the photosynthetic conditions. Experiments of light-dark transition indicate that the expression of all these genes except trxQ decreases in the dark in the absence of glucose in the growth medium. The use of two electron transport inhibitors, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), reveals a differential effect on thioredoxin genes expression being trxC and trxQ almost unaffected, whereas trxA, trxB, and the ftr genes are down-regulated. In the presence of glucose, DCMU does not affect gene expression but DBMIB still does. Analysis of the single TrxB or TrxQ and the double TrxB TrxQ Synechocystis mutant strains reveal different functions for each of these thioredoxins under different growth conditions. Finally, a Synechocystis strain was generated containing a mutated version of TrxB (TrxBC34S), which was used to identify the potential in-vivo targets of this thioredoxin by a proteomic analysis.


Assuntos
Proteínas de Bactérias/metabolismo , Fotossíntese , Synechocystis/metabolismo , Tiorredoxinas/metabolismo , Western Blotting , Cromatografia de Afinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...